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Abstract. We derive a continuous probability distribution which generates neig-
hbours of a point in an interval in a similar way to the bitwise mutation of a Gray
code binary string. This distribution has some interesting scale-free properties
which are analogues of properties of the Gray code neighbourhood structure. A
simple (1+1)-ES using the new distribution is proposed and evaluated on a set of
benchmark problems, on which it performs remarkably well. The critical parame-
ter is the precision of the distribution, which corresponds to the string length in the
discrete case. The algorithm is also tested on a difficult real-world problem from
medical imaging, on which it also performs well. Some observations concerning
the scale-free properties of the distribution are made, although further analysis is
required to understand why this simple algorithm works so well.

1 Introduction

There are two different approaches to solving continuous-value optimisation problems
using Evolutionary Computation. The first is to represent points in the search space using
real numbers and to generate new points using some continuous probability distribution
(typically Gaussian or Cauchy). The second approach is to discretise the space and
represent real numbers as binary strings. One then mutates the strings by flipping one
or more bits. It is known that there can be problems with this second approach if the
standard binary encoding is used: there exist so-called Hamming cliffs — points that
are neighbours according to the topology of the space, but are not neighbours when
considered as binary strings. An alternative representation is to use a Gray code, in
which all neighbours in the original space are also neighbours as strings. The trade-offs
between using the standard binary and Gray representations have been studied in some
detail by Whitley [1]. It can be shown that on some classes of optimisation problem, the
Gray code representation has definite advantages. For example, it can be shown that a
local search algorithm using this representation can solve a one-dimensional unimodal
problem in quadratic time, and a clever variant can do it in linear time [2].

As part of the theoretical investigation of the use of Gray codes, one can ask about
the distribution of neighbours that a point has, under this encoding. Suppose we use �
bits to represent the numbers 0, 1, . . . , 2� − 1. Given a point x in this range, we want to
know something about the set of its neighbours, generated by flipping exactly one bit of
the Gray code representation of x. For example, if � = 4 and x = 13 = 1011 in Gray
code, then the neighbours of x are 2 = 0011, 10 = 1111, 12 = 1010, 14 = 1001. One
way to charactise this question in general terms is to ask: given a point x, how many
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neighbours of x are within a given distance t? It can be shown that, on average, there
will be �lg t + 1� such neighbours [3].

It would be nice, from a theoretical point of view, if we could relate this method of
local search to the standard Evolution Strategies (ES) which make use of real-valued
representations and generate neighbours using continuous probability distributions. In
other words, we ask the question: is there a continuous probability distribution such
that the probability of generating a neighbour within a given interval is the same as if
we used a Gray code representation and bitwise (point) mutation? This is the question
we address, and answer, in section 2. We would also like to know what properties an
Evolution Strategy using this new distribution has. In particular, are there theorems
analogous to those already proved for the discrete Gray code local search algorithm?
We investigate some of these properties in section 3.

Having developed this distribution and analysed the corresponding ES from a theore-
tical point of view, an obvious question arises: is it any good for optimisation? We study
its performance on a collection of standard benchmark problems in section 4, comparing
its performance (under various settings of the main contol parameter) with a recently
published Evolutionary Programming algorithm (the “Improved Fast Evolutionary Pro-
gramming” algorithm [4]) which makes use of a population and self-adaptive mutation
rates and mixed Gaussian-Cauchy mutation distributions (see also [5]). The conclusion
is that, remarkably, the simple (1+1)-ES with the new distribution is exceptionally good.

Of course, benchmark problems are one thing, and real-world applications another.
So we conclude by presenting some results from a difficult problem in medical tissue
optics: finding the values of structural parameters describing colon tissue that could give
rise to observed colours in colonoscopy images. This is an important application area in
medicine: the ability to distinguish normal from cancerous colon tissue optically would
reduce the need for biopsies and assist clinicians in making diagnoses [6].Again, the new
algorithm is compared to the IFEP algorithm, and performs remarkably well (section 5).

2 The Continuous Version of the Gray Neighbourhood Distribution

In this section we will derive a continuous probability distribution which has properties
directly analagous to the discrete Gray code representation under the usual definition of
Hamming neighbourhoods. The key properties which we emulate are:

– mutations of a bit string generate moves with a minimum distance, specified by the
precision of the code (or equivalently, the string length).

– the probability of producing a neighbour within a distance of t discrete points of the
current point is, on average, �lg t + 1�/�.

– the Gray code naturally represents a bounded interval.
– the Gray code “wraps around”: the strings corresponding to2�−1 and0 are Hamming

neighbours. The maximum distance of a move is thus half the search space (in either
direction).

To keep things simple, we will assume that we have a one-dimensional search space
which is the interval [−1, +1]. Any other bounded interval can be mapped by an affine
transformation into this standard interval.

ϕ : [a, b] −→ [−1, +1]
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ϕ(x) = 2
(

x − a

b − a

)
− 1

We need to specify a minimum step size which we denote ε. Equivalently, we will define
the precision to be p = − log ε. The precision is an analogue of the string length of
the Gray code. The maximum step size will be half the size of the interval (in either
direction): that is, 1. We define a probability density function

f(x) =




1
px if ε < x < 1

0 otherwise

We will choose the distance between the current point and the new point (the neighbour)
according to this density function, moving to the left or right with equal probability.
Thus the probability of picking a neighbour within a distance τ of the current point is

∫ τ

ε

dx

px
=

log τ

p
+ 1

By analogy to the discrete Gray encoding, let t be the number of minimal steps needed to
move a distance of τ . That is τ = εt. Then the probability of jumping within a distance
τ becomes

log εt

p
+ 1 =

log t

p

This defines, therefore, a continuous probability distribution which distributes neigh-
bours in a way exactly analagous to the Gray code representation. But what should we
do if the distance to be moved takes us outside the range [−1, +1]? We will simply wrap
around in the same way that the Gray code does.

All that remains to be able to write an Evolution Strategy based on this distribution
is a method for generating random numbers according to the given distribution. To do
this, we note that the cumulative distribution function is:

F (x) =
∫ x

−∞
f(t)dt = 1 +

log x

p

We can generate a random number according to this distribution by first generating a
random number u uniformly from [0, 1] and then setting τ = F−1(u) = exp(−p(1−u)).
Equivalently, we can set τ = exp(−pu) since 1−u is also distributed uniformly in [0, 1].
See [7] for more details of this method.

Suppose g : [−1, 1] → R is the objective function, and, without loss of generality,
that we are minimising. We define our (1+1)-ES as follows:

1. Pick an initial point x ∈ [−1, +1].
2. Generate a random number u uniformly in [0, 1].
3. Set τ = exp(−pu).
4. With probability half, set y = x + τ , else y = x − τ .
5. If y < −1 set y = y + 2. If y > 1 set y = y − 2.
6. If g(y) < g(x), set x = y.
7. Go to 2.
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3 Properties of the Distribution

We have shown that our new continuous probability distribution generates neighbours of
a point that are distributed analagously to the discrete Gray code representation. We now
look at some other properties that the Gray code has, and derive corresponding results
for our new distribution.

The Gray code neighbourhood structure has some remarkable scale invariant pro-
perties. Firstly, it is clear from the recursive construction of the Gray code that any point
has neighbours at all scales. That is, if the point is in one half of the search interval, it
has a neighbour in the other half. Zooming in, if we consider the quarter of the search
interval containing the point, then there is a neighbour in an adjacent quarter. One can
continue to zoom in, throwing away half the interval at each step, and one will always
find neighbours. When it comes to the continuous distribution, there is, of course, a non-
zero probability of generating a neighbour right across the search interval. However,
by a “scale free” distribution is meant one in which the probability of finding points at
any distance is not vanishingly small. So the Gaussian distribution, for example, while
assigning a non-zero probability across the range, has tails that shrink exponentially: it
is therefore not scale-free. With our new distribution, however, one never has to wait too
long for jumps of arbitrarily large size (up to the maximum). The maximum jump size
is 1. The probability of making a jump bigger than 1 − δ is

∫ 1

1−δ

dx

px
= − log(1 − δ)

p

so the expected waiting time is O(p).
The second scale-invariant property shows up in the analysis of the steepest descent

Gray code algorithm applied to a one-dimensional unimodal function, in which it takes a
constant number of trials in order to disregard half of the remaining search interval under
consideration. We have a similar result here. Suppose the current point is a distance z
away from the optimum. The probability of making one jump that would take us within
z/2 of the optimum is

1
2

∫ z

z/2

dx

px
=

log 2
2p

That is, it is independent of the current position! The expected waiting time (and this
is clearly an upper bound) is thus 2p/ log 2. The number of steps required to get within
δ of the optimum is therefore O(p log(1/δ)). This result might make one think that it
is best to choose the precision p to be as small as possible, but of course, one needs a
sufficiently small minimum step size to be able to approach the optimum as closely as
desired.

4 Experiments with the ES

Having developed a simple search algorithm for theoretical purposes, it seemed worth
trying it out on a range of test problems. Partly this was to investigate the effects of vary-
ing the precision parameter on the performance of the algorithm, but we also wished to
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see if its performance were comparable with other evolutionary optimisation algorithms.
Consequently, we took eight benchmark problems from the paper [4] which introduced a
new Evolutionary Programming algorithm called Improved Fast Evolutionary Program-
ming (IFEP). We used a variant of the IFEP algorithm to provide a baseline performance
against which we compared our algorithm. Specifically, we used a (15,45)-ES in which
each population member produces three offspring. A single offspring is produced by
mutating according to both Gaussian and Cauchy distributions and taking the best (thus
each offspring requires two fitness evaluations). The mutations are self-adaptive, as de-
scribed in the paper. The best 15 individuals are chosen from the offspring to form the
next population.1

The test functions are taken from the same paper and are defined as follows (note
that the minimum is zero in each case):

Sphere function
f1(x) =

∑30
i=1(xi)2 xi ∈ [−100, 100]

Schwefel’s problem 2.22
f2(x) =

∑30
i=1 |xi| +

∏30
i |xi| xi ∈ [−10, 10]

Schwefel’s problem 1.2

f3(x) =
∑30

i=1

(∑j=i
j=1 xj

)2
xi ∈ [−100, 100]

Schwefel’s function 2.21
f4(x) = max{|xi|, 1 ≤ xi ≤ 30} xi ∈ [−100, 100]

Generalised Rosenbrock’s function
f5(x) =

∑29
i=1(100(xi+1 − x2

i )
2 + (xi − 1)2) xi ∈ [−30, 30]

Generalised Rastrigin’s function
f9(x) =

∑30
i=1(x

2
i − 10 cos(2πxi) + 10) xi ∈ [−5.12, 5.12]

Ackley’s function

f10(x) = −20 exp
(

−0.2
√

1
30

∑30
i=1 x2

i

)

− exp
(∑30

i=1 cos 2πxi

)

+20 + e xi ∈ [−32, 32]

Generalised Griewangk function

f11(x) = 1
4000

∑30
i=1 x2

i − ∏30
i=1 cos

(
xi√

i

)
+ 1 xi ∈ [−600, 600]

For multi-dimensional problems such as these, we have to adapt our Evolution Stra-
tegy slightly. At each iteration, we mutate all of the parameters of the current point
simultaneously, using the method described in the previous section.

We conducted a number of experiments with these test functions, varying the preci-
sion parameter p through the values 25, 50, 100 and 200. We also considered the effect
of the number of iterations allowed (1000, 10000, 100000 and 1000000). We adjusted

1 Although this is a variant on the IFEP algorithm, the results we obtained are largely similar to
those reported for IFEP.
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the number of generations allowed to the IFEP algorithm accordingly, to get the same
total number of function evaluations. Each experiment was run 30 times. The average
results (function values) are shown in figure 1. Standard deviations are not shown, but
nearly all differences are significant at the 99.9% level according to a two-tailed t-test.
Note that each graph is shown on a log-log scale.

It is clear that our new (1+1)-ES has performed very well, especially over large
iterations with a high precision value. What is also clear from the data is that it is often
significantly better than the IFEP algorithm over a small number of iterations, when a
lower precision value is used. It also gives results that are comparable to the best results
reported for various evolutionary algorithms in [5]2. We also ran some experiments with
a (1+1)-ES with Gaussian mutation using the 1/5 success rule. As might be expected,
this algorithm performs extremely well on the sphere function. It performs moderately
well on other unimodal functions. However it is terrible on multimodal functions — by
construction, it is designed to converge rapidly to the nearest local optimum. The new
algorithm (and indeed IFEP) is superior on such functions.

5 A Real-World Application

Having tested our algorithm on some standard benchmark problems, we then applied
it to a difficult real-world problem, from medical image interpretation. An increasingly
important application of image interpretation is the development of non-invasive tech-
niques for studying tissue structure. Clinicians want to be able to deduce as much as
possible about the structure of an organ from its visual images, to reduce the necessity
of performing biopsies. One approach to this problem focuses on analysing the physics
of image formation. The basic idea is to create a physics-based model of the tissue struc-
ture and to simulate the effect of shining white light onto the surface. As a result of that
simulation, the amount of light that reemerges at the tissue surface (spectral reflectance),
after interacting with the tissue structure, is calculated. By adjusting the parameters of
the model, one tries to reproduce the optical spectra measured on real tissue, in order to
analise the corectness of the model. One can then, in principle, match the spectra with the
appropriate physical parameters and extract diagnostically valuable information about
the tissue structure. However, it is rather difficult to establish all the relevant parameters
and the corresponding value ranges for them. The initial stages of this research depend,
therefore, on using optimisation algorithms to try to establish suitable parameter settings.
For a more detailed description of the problem, see [6].

We have obtained a set of spectra from normal colon tissue taken during colonoscopy
procedures, where an optical fibre bundle (which delivers and collects light) is passed
through a working channal of a colonoscope, and placed against the colon wall of a
patient [8]. In each case an observed spectrum is collected. We then use our optimisation
algorithm to try to find parameter settings in the physics-based model which will account
for the observed spectrum.

The physics-based model of colon tissue is developed so that it simulates the inter-
action of incident light with the structure and morphology of the real colon tissue, which

2 Exact data are not presented in that paper. However, from the graphs shown it is clear that our
new algorithm is comparable or better on all test functions than the algorithms presented in that
paper.
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Fig. 1. Comparison of performance of the new (1+1)-ES (solid lines) and IFEP (dashed line).
There are four different settings of the precision parameter (p = 25, 50, 100, 200), indicated by
increasing thickness of the line used. Performance tends to improve with increasing precision.
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is a layered structure composed of four layers (mucosa, submucosa, muscularis externa
and serosa). Our model predicts the light interaction with the first three layers, because
the spectral reflectance of the colon tissue depends on the interaction of the light with
only those layers.

The parameters of the model which describe the optical properties of the colon layers
and hence directly influence the remitted spectrum, are:

– haemoglobin concentration is the amount of hemoglobin per unit volume of tissue.
It describes the absorption of light in the colon tissue.

– scatterer size represents the size of collagen fibres in colon tissue, given that the
collagen is the main scatterer of light in colon.

– scatterer density is the number of scattering particles (collagen fibres) per unit
volume of the tissue.

– thickness of each of the tissue layers included in the model

These four parameters must be specified for both the mucosa and submucosa separately.
The third layer (muscularis externa) is represented by a fixed set of values. In addition
there is a scaling factor to account for adjustments to the normalisation process, in which
the amount of collected light is divided by the amount of light reflected from a reflectance
standard. There are therefore nine parameters to be optimised.

We use the Kubelka-Munk algorithm, [9,10], to calculate the spectrum corresponding
to a given set of parameter values. This is an approximate algorithm for calculating the
diffuse reflectance of light from a layered structure. Greater accuracy could be obtained
using the Monte Carlo method [11], but that takes much longer to execute (several
minutes per run).

We seek to minimise the error between the generated spectrum and the target (mea-
sured) spectrum at 113 wavelengths equally spaced in the range from 400 nm to 624 nm.
The error is calculated as average absolute distance between the corresponding spectral
values:

d(y, z) =
1
n

n∑
i=0

|yi − zi|

where yi and zi are the values of measured and simulated spectra corresponding to the
wavelength wi, and n is the total number of wavelengths. Due to the time it takes to
run the Kubelka-Munk algorithm (approximately one second per run), we allow only
1000 function evaluations. The precision is set to 20. We again compare with the IFEP
algorithm, with the number of generations adjusted to give the same number of function
evaluations. The results are shown in table 1. The new Evolution Strategy is clearly
superior (significance > 99.99% on a paired t-test). Some typical results are shown in
figure 2.

6 Discussion and Conclusions

We have introduced a new Evolution Strategy, with a mutation probability distribution
based on a continuous version of the Gray code neighbourhood structure. The distribution
we have defined has certain scale-free properties which may be assisting its performance
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Fig. 2. Six example spectra from normal tissue(solid lines) obtained during colonoscopy. The new
(1+1)-ES (dotted lines) and IFEP (dashed lines) algorithms were both used to find parameter
settings to approximate these spectra, using the Kubelka-Munk method. Errors are measured as
the average absolute distance from the generated curve and the target spectrum.
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Table 1. Performance of new (1+1)-ES and IFEP finding parameters for a physics-based model
of colon colouration. Number of samples = 45.

Algorithm Mean Error Standard Deviation
(1+1)-ES 0.0178 0.0081

IFEP 0.0391 0.0121

in search. In particular, while the algorithm spends a lot of its time searching locally, it
nevertheless samples at a longer range with non-trivial probability (see figure 3). The
mean of the distance distribution is

∫ 1

ε

dx

p
=

1 − ε

p
≈ 1

p

The probability of choosing a distance larger than the mean is approximately log p/p.
So, for example, with a precision of p = 100, the algorithm spends 95.4% of its time
within 0.01 of its current position, but searches outside of this area with probability
0.046, which means that a “long-distance” jump (that is, one greater than the mean)
occurs on average every 21.7 iterations. We also note that the standard deviation of the
distribution is approximately 1/

√
2p which is rather large. For example, with p = 100,

the mean is 0.01 and the standard deviation is 0.07.

-1 -0.5 0.5 1

1

2

3

4

Fig. 3. The probability density function of the “Continuous-Gray” distribution for p = 20 (solid
line). A Gaussian distribution with the same standard deviation (small dashes) and a Cauchy
distribution with scale factor set to the same value (large dashes) are also shown. It can be seen
that the new distribution strongly prefers small local moves, but with non-trivial probability of
making larger jumps at all scales.
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However, we are still some way from understanding the effects of changing the
precision on the performance of the algorithm, apart from the simple one-dimensional
unimodal case. Further experiment and analysis are required. From a theoretical point
of view, it is interesting to refer this question back to the case of a local search algorthim
using binary strings under Gray code: what is the effect of changing the precision (that
is, the string length) in this case?

The search algorithm seems to be rather useful, especially when a relatively small
number of function evaluations are allowed. This is often the case in real-world applica-
tions, such as the one presented above, when fitness can be very expensive to calculate.
It seems that having a relatively low precision works well over a short number of itera-
tions, although this is yet to be demonstrated theoretically. Of course it is possible that
an adaptive scheme, with increasing precision over time, may be worth investigating.

One nice feature of the new algorithm is that it applies naturally to bounded opti-
misation problems, which are a very common class. The distance distribution, together
with the wrapping around of the search interval (inherited from the discrete Gray code)
means that new points are always generated within the required bounds. Algorithms
that use Gaussian or Cauchy distibutions have to be artificially adjusted when invalid
parameter values are generated (either by correcting the value to be the nearest bound,
or by simply resampling until a legal value is obtained).

However, it is a well-known fact that if an algorithm is good for some problems,
it must be bad for others. It is therefore worth considering situations in which the new
algorithm would fail to perform well. If the problem has a number of narrow, well-
separated optima, then any search algorithm maintaining a single point at each iteration
is likely to be trapped in one of those optima — and it will be a matter of chance
whether or not the right one is chosen. It is hard to see how this could be avoided without
making use of a population. A population is also helpful if one wants to introduce
some crossover. This can be a good idea if there exists some correlation between the
variables of the problem. We have done some preliminary investigations into using the
new distribution as a mutation operator in a steady-state GA, with crossover, and we
have also looked at using it in a hybrid “memetic” style algorithm, with some success.
One difficult landscape feature that is harder to address is the situation where there are
“ridges” running at an angle to the axes specified by the parameters of the problem (e.g.
if we rotated the axes for Rastrigin’s function f9). The most promising approach here
would be to incorporate some sampling of the landscape so as to realign the search
parameters with the ridges (e.g. by using a covariance mutation matrix). However, this
kind of local modelling is itself quite expensive, and so we have a trade-off which may
or may not be worthwhile.
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5. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization.
Evolutionary Computation 1 (1993) 1–23
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